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Abstract
When a fluid or Ising-like magnet is confined between two parallel walls that are
each completely wet by different bulk phases, the interface separating the phases
is subject to large-scale fluctuations determined by the slit width. It was noted
some time ago that, in two dimensions, the scaling expression for the probability
distribution function describing the interfacial height across the slit shows
remarkable similarities with predictions of conformal invariance. However,
this local scale invariance appears to contradict the strongly anisotropic nature
of (1 + 1)-dimensional interfacial fluctuations along and perpendicular to the
interface, characterized by the wandering exponent. In this paper, we show that
similarity with conformal invariance is not coincidental and can be understood
explicitly as the projection of a local scale invariance for a wandering line in
2 + 1 dimensions.

PACS numbers: 68.08.Bc, 05.70.Fh, 05.70.Np

1. Introduction

The behaviour of fluid interfaces in confined geometries has received enormous attention
over the last 20 years. A well-studied example of this is fluid confinement in a parallel-
plate (capillary-slit) geometry in which each wall preferentially adsorbs a different bulk phase
[1–5]. In this case, the fluid phase behaviour is very different to that occurring for confinement
between identical walls, and is determined by length-scales related to wetting transitions. This
geometry is very convenient for simulation studies [6, 7] and other numerical approaches such
as the density-matrix renormalization group [8], and has revealed a great deal about the scaling
behaviour arising from interfacial fluctuation effects and also wetting-induced delocalization
transitions. One peculiar feature of such interfacial confinement in two dimensions (i.e. a
one-dimensional interface) that has not been understood, concerns the apparent conformal
invariance of an important observable—the probability distribution function (PDF) for the
interface position [9]. To be more specific, analytic expressions for the PDF, as determined
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Figure 1. Schematic illustration of a confined interface in a two-dimensional Ising strip with
opposing surface spins, below the bulk critical temperature. The interface separating up-spin and
down-spin phases is subject to large-scale and strongly anisotropic fluctuations characterized by the
correlation lengths ξ‖ and ξ⊥ along and across the strip. In coarse-grained effective Hamiltonian
descriptions, the interfacial configuration is described by the collective coordinate y(t).

exactly in model calculations, are precisely of the form that would be expected if conformal
invariance were obeyed. However, the presence of such an underlying isotropic local scale
invariance is highly unexpected since it is well appreciated that fluctuating interfaces exhibit
strongly anisotropic scaling in directions parallel and perpendicular to the interface [10, 11].
Indeed, this anisotropic scaling forms the basis for all renormalization group theories of
wetting [11, 12]. In this paper, we present a simple argument (based on a transfer-matrix
formulation) which shows how the conformal invariance for the interfacial height PDF in
(1 + 1)-dimensional systems arises from local scale invariance properties of random walks in
2 + 1 dimensions and complements, rather than contradicts, the basic anisotropic scaling of
fluctuating interfaces. We begin our paper by recalling some background theory, concerning
the finite-size scaling behaviour of confined interfaces (below the bulk critical point), and the
strong similarities these results bear with predictions of conformal invariance for the finite-size
scaling of the magnetization profile exactly at criticality.

2. Background theory

2.1. Finite-size scaling of an interface between two walls

Consider a two-dimensional square lattice Ising model of infinite length and finite width L
(measured in units of the lattice spacing). We suppose that the bulk magnetic field is zero but
that the surface spins are fixed to +1 and −1 along the lower and upper edges (walls) of the
strip, respectively (see figure 1). Below the bulk critical temperature T < Tc, these asymmetric
boundary conditions induce the formation of a one-dimensional interface separating up-spins
(below it) and down-spins (above it), that runs along the length of the strip. The interface
is unbound from both the lower and upper walls since these are completely wet by the up-
spin and down-spin bulk phases, respectively. Provided the width L is much bigger than
the bulk correlation length, the fluctuations of this interface are extremely large, and lead to
scaling behaviour in the magnetization profile, energy density and their correlations. This
scaling is strongly anisotropic and is characterized by length-scales ξ⊥ ∝ L and ξ‖ ∝ L2,
perpendicular and parallel to the interface, respectively [4]. The relation between these
length-scales, ξ⊥ ≈ ξ

ζ

‖ , identifies the thermal value of the wandering exponent ζ = 1/2, for
one-dimensional interfaces [13], which plays a crucial role in fluctuation theories of wetting.
Consider, for example, the equilibrium value of the local magnetization at a perpendicular
distance y from the lower wall, again measured in units of the lattice spacing. For fixed
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T < Tc, and in the limits y → ∞ and L → ∞ with y/L arbitrary, we anticipate the scaling
law m(y) = m0M(y/L) where m0 is the spontaneous magnetization and M(Y) is a scaling
function. Exact calculations determine the precise expression of this scaling function as [14]

m(y)

m0
= 1 − 2y

L
+

1

π
sin

(
2πy

L

)
. (1)

On the other hand, the two-point spin–spin correlation function between spins at coordinates
y1 and y2, separated by a distance t12 along the strip, scales as G(y1, y2; t12) = m2

0M2(y1/L,

y2/L; t12/L
2), reflecting the anisotropy of interfacial fluctuations and the dependence on the

dimensionless variable t12/ξ‖. The reason we have chosen the variable t, rather than x, to denote
the distance along the strip will be clear later. Similar scaling is present in the properties of
the energy-density operator (the product of nearest-neighbour spin variables at positions y and
y +1) and its correlations. For example, the one-point function contains a singular contribution
that scales as [14]

ε(y)

σ
= 2

L
sin2

(πy

L

)
, (2)

where σ is the surface tension of the up-spin/down-spin interface.
The above scaling expressions, which emerge from very involved transfer-matrix analysis

of the microscopic Ising model, were first predicted using a much simpler continuum effective
interfacial Hamiltonian [4, 9]. Let y(t) denote the local height of the interface at position t
along the strip. The energy cost of an interfacial configuration is written, phenomenologically,
as

H [y] =
∫

dt

{
�

2
ẏ2 + W(y)

}
, (3)

where � is the interface stiffness coefficient, ẏ = dy/dt and W(y) is the binding potential
which models the confinement and the interaction with the walls. Obviously, this interfacial
description is only valid below the bulk critical temperature and for slit widths much larger
than the bulk-correlation length. This is sufficient to capture the precise scaling behaviour
induced by the wandering of the domain wall. The transfer-matrix analysis of the interfacial
model is straightforward and, in the limit of infinite (momentum) cut-off, is equivalent to a path
integral [15, 16]. Thus, the spectrum is determined from the solution of the Schrödinger-like
ordinary differential equation

− 1

2�β2

d2ψn(y)

dy2
+ W(y)ψn(y) = Enψn(y), (4)

where β = 1/kBT . In particular, for the present problem of an infinitely long strip,
the probability of finding the interface at distance y above the lower wall is simply
P(y) = |ψ0(y)|2. This directly determines the energy density and magnetization profiles
using ε(y) = σP (y) and m(y) = m0

(
1 − 2

∫ y

0 P(τ) dτ
)
, respectively. In addition, the

associated ground-state energy E0 determines the singular contribution to the excess free
energy per unit length. For Ising-like systems with purely short-ranged forces, one may
approximate the binding potential as an infinite square well, W(y) = 0 for 0 < y < L and
W(y) = ∞ otherwise, which simply models two hard-wall repulsions. The ground-state
wavefunction ψ0(y) ∝ sin(πy/L) then leads to

P(y) = 2

L
sin2

(πy

L

)
(5)

and, hence, to the scaling expressions for ε(y) and m(y) quoted above. For our purposes, it is
relevant that the PDF has a characteristic power-law or short-distance expansion

P(y) ∝ y2; y/L � 1 (6)
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as the scaling variable y/L → 0. This power law has a more general significance and is also
obtained when one considers the complete wetting transition, occurring at a single wall, from
off bulk coexistence [17]. To see this, consider a semi-infinite Ising model, with surface spins
fixed to +1, but now with a negative bulk magnetic field, h, implying that the spins far from
the wall have a net negative magnetization. As the strength of the magnetic field is reduced,
the thickness of the adsorbed layer of up-spins near the wall diverges [11, 18, 19]. One may
model this using the interfacial model (3) with the binding potential W(y) = 2m0|h|y (for
y > 0), from which it follows that the mean wetting layer thickness grows as 〈y〉 ≈ |h|−1/3

[15, 20]. The PDF for the interfacial height also shows scaling in this limit, and can be written
as P(y) ≈ 〈y〉−1�(y/〈y〉), where �(Y) is a universal scaling function (the square of an Airy
function). For fixed y (far from the wall) and h → 0, corresponding to the scaling variable
Y → 0, the scaling function has the short-distance expansion, �(Y) ≈ Y 2, and is the same
as the power law shown in (6). More generally still, for systems with short-ranged forces,
the divergence of the film thickness and the power law of the short-distance expansion of the
PDF, at fluctuation-dominated complete wetting transitions, are determined by the value of
the wandering exponent [10, 11, 17]: 〈y〉 ≈ |h|−ζ/(2−ζ ) and P(y) ∝ y2(1/ζ−1). These recover
the results quoted above on setting ζ = 1/2, corresponding to the thermal wandering of a
one-dimensional interface.

Returning to the strip geometry, we note that (according to the interfacial description) the
results (1) and (2) remain valid and represent universal scaling behaviour, provided that the
tails of the binding potential decay faster than the inverse square of the distance from each wall.
This corresponds to the fluctuation-dominated regime of 2D complete wetting transitions. For
more slowly decaying potentials, interfacial fluctuation effects are less strong, with ξ⊥ � L

for large strips widths, and do not lead to simple universal scaling behaviour. It is instructive
to consider the marginal boundary between these fluctuation-dominated and mean-field-like
regimes in more detail. Let us consider the semi-infinite geometry first and consider the
complete wetting transition with a marginal binding potential W(y) = 2m0|h|y + By−2. For
simplicity, we will take B > 0 to avoid the complication of a wetting transition, corresponding
to binding the interface to the wall when B is sufficiently negative [21]. The presence of the
marginal inverse-square tail does not change the critical exponent for the growth of the wetting
layer, 〈y〉 ≈ |h|−1/3, although the amplitude is altered. The transition is still characterized
by large interfacial fluctuations and the PDF for the interfacial height still shows scaling such
that P(y) ≈ 〈y〉−1�B(y/〈y〉). However, the short-distance expansion of the scaling function
is strongly influenced by the marginal interaction, and for fixed y and h → 0, shows a power
law

P(y) ∝ y2φ. (7)

where φ = (1 +
√

1 + 8β2�B)/2. Now consider the analogous finite-size scaling behaviour
for an interface in a strip geometry with marginal forces. We require that, in the limit of large L,
the binding potential decays as an inverse square of the distance from each wall. There are, of
course, many potentials that decay in this fashion, for example the simple linear combination
W(y) ≈ y−2 + (L − y)−2. Instead, however, we consider interfacial confinement described
by the marginal binding potential

W(y) = Bπ2

L2
sin−2

(πy

L

)
(8)

with W(y) = ∞ for y < 0 and y > L. The reason for this choice will become clearer
later. Again, for simplicity, we assume B > 0 so that the walls are completely wet by the
appropriate bulk phase. Note that, in the limit L → ∞, the binding potential behaves as a pure
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inverse-square power law at finite distances from each wall. The ground-state wavefunction,
for the marginal potential (8), is simply ψ0 ∝ sinφ(πy/L) leading to

P(y) ∝ sin2φ
(πy

L

)
, (9)

while the corresponding eigenvalue is

E0 = π2φ2

2�β2L2
. (10)

Setting B = 0, recovers the universal behaviour indicative of short-ranged forces, discussed
above.

2.2. Similarities with conformal invariance

The above results bare a strong similarity to universal finite-size scaling behaviour in 2D
systems occurring exactly at the bulk critical point. Consider a semi-infinite Ising model
whose surface spins are fixed to +1 and again denote the coordinate perpendicular to the edge
(wall) by y. Let us now denote the coordinate parallel to the edge by the more traditional
variable x. Exactly at the bulk critical temperature T = Tc and in zero bulk field, scaling
theory implies that, at large distances, the magnetization profile necessarily decays as a
universal power law [22–24]

m(y) ≈ Ay−β/ν, (11)

where β = 1/8 and ν = 1 are the well-known 2D critical exponents for the spontaneous
magnetization and bulk correlation length, respectively, and A is an unimportant metric factor.
Now, consider the related finite-size scaling of the magnetization profile occurring at the
bulk critical point in an infinitely long Ising strip of width L, but with symmetric boundary
conditions that fix the spins to +1 at upper and lower edges. Following the scaling theory of
Fisher and de Gennes [23], in the limit y → ∞ and L → ∞ with y/L fixed, the magnetization
profile behaves as m(y) = AL−β/νMc(y/L), where Mc(Y ) is a universal scaling function.
Burkhardt and Eisenreigler [25] pointed out that the scaling function can be determined
using a simple argument based on conformal invariance. The power law (11) implies that
magnetization transforms as m(y/b) = bβ/νm(y) under a global spacial rescaling by a factor
b. The assumption of a local conformal invariance generalizes this co-variance law to

m(u, v) = |w′(z)|−β/νm(y), (12)

where w(z) = u + iv is an analytic function that maps the original plane z = x + iy to new
coordinates (u, v). Using w(z) = (L/π) ln z to map the semi-infinite plane to the infinite strip
(0 < v < L, −∞ < u < ∞), they predicted

m(v) ≈ AL−β/ν sin−β/ν
(πv

L

)
, (13)

which has been tested and confirmed in subsequent studies [26].
There is, therefore, a remarkable similarity between the expression for the magnetization

profile (13), pertinent to the symmetric Ising strip at bulk criticality, with the result (5) for the
interfacial height PDF (and its generalization (9), for marginal forces), in the asymmetric Ising
strip, for T < Tc. It is tempting to conjecture [9] that some aspect of conformal invariance
applies to interfaces, and that one may similarly use the logarithmic map w(z) = (L/π) ln z

to transform the short-distance expansion (7) into (9). In other words, a similar covariance
law to (12) also holds for the PDF for wetting transitions but with the appropriate short-
distance expansion exponent 2φ replacing −β/ν. This is all the more appealing because the
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marginal binding potential (8) is also obtained by logarithmically mapping the pure power-law
W(y) = By−2 to the strip geometry.

However, there is a serious problem with this conjecture as it appears to contradict the
anisotropic scaling associated with interfacial fluctuations. Recall that conformal invariance
implies that local scale dilations are isotropic. In the transformation (12), both x and y
coordinates rescale with the same local dilation factor. As stressed above, scaling and
associated scale invariance for interfaces is strongly anisotropic. For example, the free
part (gradient term) in the interfacial Hamiltonian (3) is invariant under a spacial rescaling
y → y/b⊥ and t → t/b‖, where b⊥ = √

b‖ (as required by the value of the wandering
exponent ζ = 1/2). Any local version of this scale invariance cannot be conformal. In
addition, if some aspect of conformal invariance did apply to interfaces, one would like to
understand how it arises explicitly in the transfer-matrix formulation.

3. Local scale invariance of a fluctuating line in 2+1 dimensions

The similarity between the results for finite-size scaling in critical Ising strips and for confined
interfaces is, in fact, not coincidental. To see how it arises, we note that the behaviour of a
confined interface in 1 + 1 dimensions shares a great deal in common with the properties of a
fluctuating line in 2 + 1 dimensions. In both cases, the object that fluctuates is one dimensional
and analogous to the motion of a random-walk. The apparent conformal invariance for
the interfacial problem is a projection of an explicit conformal invariance for this higher
dimensional problem describing the wandering line. However, the geometrical meaning of
this mapping is not the same as in the standard application of conformal invariance in the
critical Ising strip. In particular, it does not refer to the direction parallel to the interface
(which we denoted as t) and hence does not invoke the anisotropic scaling factors b⊥ and b‖.
Rather it refers to the two-dimensional plane perpendicular to t.

To make these ideas explicit, consider the statistical mechanics of a one-dimensional
directed line in a 3D space (see figure 2). The line no longer represents a domain wall but
can be thought of representing a wandering directed polymer strand. The coordinate parallel
to the principle direction of the line is written as t while, in the plane perpendicular to this,
the coordinates (x(t), y(t)) describe its location parametrically. Neglecting overhangs and
assuming that fluctuations from a straight-line configuration are relatively small, we suppose
that the energy cost of a configuration is given by the effective Hamiltonian

H [x, y] =
∫

dt

{
�

2
(ẋ2 + ẏ2) + W(x, y)

}
. (14)

Here, � is a line-tension-like quantity as opposed to a surface tension, and W is a binding
potential which now depends on two coordinates. Mathematically, this is just the (2 + 1)-
dimensional version of the (1 + 1)-dimensional interfacial Hamiltonian described earlier (3).
The motion of this line is similar to that of the interface and is characterized by the same
wandering exponent. That is the free Hamiltonian is invariant under (x, y) → (x/b⊥, y/b⊥)

and t → t/b‖ with b⊥ = √
b‖. In the limit of infinite cut-off, the partition function sum is

again equivalent to a path integral and the transfer-matrix spectrum is found from solution of
the two-dimensional Schrödinger equation Ĥψn(x, y) = Enψn(x, y) where

Ĥ = − 1

2�β2

(
∂2

∂x2
+

∂2

∂y2

)
+ W(x, y). (15)

As before, for an infinitely long system and any fixed value of t, the probability of finding the
line at a given location is determined by the ground state P2(x, y) = |ψ0(x, y)|2, where
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Figure 2. Schematic illustration of a wandering line in an infinitely long (2 + 1)-dimensional
confined geometry with periodic boundary conditions in the x direction. The probability of finding
the line at a given height is the same as the corresponding PDF for the confined interface shown in
figure 1.

the subscript refers to the two dimensions of the (x, y) plane. Integrating this w.r.t x,
P2(y) = ∫

dx|ψ0(x, y)|2, generates the probability of finding the line at any height y.
Consider the behaviour of the line interacting with a bounding plane which restricts

its motion to the semi-volume y > 0. Suppose, for example, the potential is given by
W(x, y) = 2m0 |h| + By−2 so that the line is free to wander parallel to the plane, but is bound
in the perpendicular direction to it. As h → 0, the line unbinds from the plane, analogous to
the interfacial unbinding (complete wetting) transition in 1 + 1 dimensions described earlier.
In this limit, the eigenvector equation for the ground state reads

− 1

2�β2

∂2ψ0(x, y)

∂y2
+ W(x, y)ψ0(x, y) = 0 (16)

where we have used the fact that the ground state is independent of x. The solution
to this equation, neglecting normalization constants, is ψ0(x, y) ∝ yφ where φ = (1 +√

1 + 8β2�B)/2 is the same short-distance expansion exponent that appeared earlier for the
marginal interfacial problem. Next, consider a logarithmic coordinate mapping of the (x, y)

plane: z = x + iy → w(z) = u + iv with w = L/π ln z. These coordinates are perpendicular
to the direction of the line, and are subject to the same isotropic local dilation. If we also map
the wave-function according to

ψ0(u, v) = |w′(z)|φψ0(x, y), (17)

then the differential equation (16) transforms to

− 1

2�β2

∂2ψ0(u, v)

∂v2
+ W(u, v)ψ0(u, v) = π2φ2

2�β2
ψ0(u, v), (18)

where W(u, v) = (Bπ2/L2) sin−2(πv/L). This is the correct ground-state eigenvector
equation for a line confined between two planes, separated by a distance L. Note there is
no ∂2ψ/∂u2 term due to translational invariance. The transformation (17), generates not
only the appropriate bound-state wavefunction ψ0(u, v) ∝ sinφ(πv/L) but also identifies the
ground-state energy for the transformed potential W(u, v). This is an explicit demonstration
of local scale invariance for the wandering line in 2 + 1 dimensions within the transfer-matrix
formalism. Clearly, the apparent conformal invariance for the confined interface is a projection
of this, owing to the translational invariance in the u direction. Indeed, precisely the same
ground-state wavefunction (up to a trivial normalization factor) and energy (10) describe the
motion of the line, if one supposes that the system is finite in the u-direction with periodic
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boundary conditions in the planes u = 0 and u = N (say). The normalized PDF for the
height P2(y) ∝ sin2φ(πy/L) is independent of N. The small-N limit of this has the same
interpretation as the interfacial problem.

4. Discussion

The above demonstration clarifies the status of the original conjecture concerning the possible
application of conformal invariance to confined interfaces. The similarity between (9) and
(13) is not coincidental, and the result (9) can indeed be obtained by conformally mapping
a power-law short-distance expansion. However, the original interpretation and reasoning
behind this [9] were not correct, and are different to the application of conformal invariance
to the critical Ising strip (12). As we have shown, the conformal invariance actually applies
to the motion of a wandering line in the plane perpendicular to its principle direction. This
is the reason why it does not contradict the required anisotropy of scaling in the parallel and
perpendicular directions.

On the negative side, these remarks seem to suggest that this type of local scale invariance
has only limited applications for confined interfaces. Being a projection of the conformal
invariance for the line in 2 + 1 dimensions, the mapping must preserve translational invariance
in the hidden u dimension, which is extremely restrictive. Nevertheless, there are possible
extensions of this approach which warrant further investigation. The first is straightforward.
In the original discussion of possible local scale invariance for confined interfaces, it was noted
that other properties, related to higher states of the transfer-matrix spectrum, appear to map
conformally. It appears very likely to us that this has a similar explanation and involves the
projection of invariant properties of the spectrum describing the wandering line. One might
also like to investigate if the conformal invariance applies in systems where the wandering
exponent is different to its thermal value. It might appear that the above argument, based
on local scale invariance of the fluctuating line, is independent of the value of the wandering
exponent since it does not invoke the anisotropic scaling of the (x, y) plane and t direction.
However, this is not the case since, as remarked earlier, the value of the exponent φ appearing
in the short-distance expansion of the PDF near one wall depends on ζ . There are a number of
ways of altering the value of the wandering exponent, for instance, by modelling the presence
of random-bond-like disorder [11]. Alternatively, one may use substrate geometry to influence
the interfacial fluctuations. For example, the unbinding of an interface in a three-dimensional
wedge can be described by a one-dimensional Hamiltonian in which the effective tension
depends on the height from the wedge bottom [27]. The transfer-matrix analysis of this is now
equivalent to quantum mechanics with a position-dependent mass, and alters the value of the
wandering exponent to ζ = 1/3 [28, 29]. One might be able to use a generalization of the above
local scale invariance argument to this system in order to predict finite-size effects in ‘double-
wedge’ geometries, similar to those employed in simulation studies. Finally, one would like
to understand what aspects of local scale invariance apply to two-dimensional membranes.
It is already known, from scaling and renormalization group arguments, that the fluctuations
of two-dimensional membranes and one-dimensional interfaces are related precisely to each
other [30]. The demonstration of conformal invariance for interfaces provided here leaves
open the possibility that similar aspects apply to membranes.
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